Insights into the Phosphoryl Transfer Mechanism of Human Ubiquitous Mitochondrial Creatine Kinase

نویسندگان

  • Quanjie Li
  • Shuai Fan
  • Xiaoyu Li
  • Yuanyuan Jin
  • Weiqing He
  • Jinming Zhou
  • Shan Cen
  • ZhaoYong Yang
چکیده

Human ubiquitous mitochondrial creatine kinase (uMtCK) is responsible for the regulation of cellular energy metabolism. To investigate the phosphoryl-transfer mechanism catalyzed by human uMtCK, in this work, molecular dynamic simulations of uMtCK∙ATP-Mg2+∙creatine complex and quantum mechanism calculations were performed to make clear the puzzle. The theoretical studies hereof revealed that human uMtCK utilizes a two-step dissociative mechanism, in which the E227 residue of uMtCK acts as the catalytic base to accept the creatine guanidinium proton. This catalytic role of E227 was further confirmed by our assay on the phosphatase activity. Moreover, the roles of active site residues in phosphoryl transfer reaction were also identified by site directed mutagenesis. This study reveals the structural basis of biochemical activity of uMtCK and gets insights into its phosphoryl transfer mechanism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In Vitro Inhibition of Human Sperm Creatine Kinase by Nicotine, Cotinine and Cadmium, as a Mechanism in Smoker Men Infertility

Background Nicotine, cotinine and cadmium are harmful components of cigarettes that have an effect on human reproductive function. Although the effects of cigarette smoke on male reproductive function is characterized in several articles its mechanism of action is still unknown. In the present study, we investigate the effect of nicotine, cotinine and cadmium on human sperm creatine kinase acti...

متن کامل

Evidence for an associative mechanism in the phosphoryl transfer step catalyzed by rabbit muscle creatine kinase.

Creatine kinase does not catalyze the scrambling of 18O in adenosine 5'-[alpha beta-18O, beta-18O2]triphosphate in the absence of creatine, in the presence of L-arginine or taurocyamine (competitive inhibitors of creatine), or in the presence of poor substrates where single turnover experiments were performed. In order to support this prima facie evidence for an associative mechanism of phospho...

متن کامل

Mice deficient in ubiquitous mitochondrial creatine kinase are viable and fertile.

Creatine kinase isoenzymes (CK; EC 2.7.3.2) play a pivotal role in high-energy phosphoryl metabolism through subcellular compartmentation of the creatine-phosphate < = > ATP conversion reaction. In mouse, protein subunits constituting the ubiquitous mitochondrial CK (UbCKmit) and cytosolic B-CK isoforms are co-expressed in various cells and tissues with high and fluctuating energy demands such ...

متن کامل

In vitro Effect of Lead, Silver, Tin, Mercury, Indium and Bismuth on Human Sperm Creatine Kinase Activity: a Presumable Mechanism for Men Infertility

Background: The aim of the present study was to investigate the in vitro effects of mercury (Hg+2), lead (Pb+2), silver (Ag+2), tin (Sn+2), bismuth (Bi+3) and indium (In+3) ions on sperm creatine kinase. Methods: creatine kinase was isolated from human sperm homogenates after chromatography on a DEAE cellulose column. Results: At 60 µg ml-1 metal concentration, 70% of the creatine kinase activi...

متن کامل

Separate nuclear genes encode sarcomere-specific and ubiquitous human mitochondrial creatine kinase isoenzymes.

Creatine kinase (EC 2.7.3.2) isoenzymes play a central role in energy transduction. Nuclear genes encode creatine kinase subunits from muscle, brain, and mitochondria (MtCK). We have recently isolated a cDNA clone encoding MtCK from a human placental library which is expressed in many human tissues (Haas, R. C., Korenfeld, C., Zhang, Z., Perryman, B., Roman, D., and Strauss, A. W. (1989) J. Bio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016